
Original Article

The International Journal of High
Performance Computing Applications
1–18
� The Author(s) 2015
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342015580139
hpc.sagepub.com

Acceleration of GPU-based Krylov
solvers via data transfer reduction

Hartwig Anzt1, Stanimire Tomov1, Piotr Luszczek1,
William Sawyer2 and Jack Dongarra1,3,4

Abstract
Krylov subspace iterative solvers are often the method of choice when solving large sparse linear systems. At the same
time, hardware accelerators such as graphics processing units continue to offer significant floating point performance
gains for matrix and vector computations through easy-to-use libraries of computational kernels. However, as these
libraries are usually composed of a well optimized but limited set of linear algebra operations, applications that use them
often fail to reduce certain data communications, and hence fail to leverage the full potential of the accelerator. In this
paper, we target the acceleration of Krylov subspace iterative methods for graphics processing units, and in particular
the Biconjugate Gradient Stabilized solver that significant improvement can be achieved by reformulating the method to
reduce data-communications through application-specific kernels instead of using the generic BLAS kernels, e.g. as pro-
vided by NVIDIA’s cuBLAS library, and by designing a graphics processing unit specific sparse matrix-vector product ker-
nel that is able to more efficiently use the graphics processing unit’s computing power. Furthermore, we derive a model
estimating the performance improvement, and use experimental data to validate the expected runtime savings.
Considering that the derived implementation achieves significantly higher performance, we assert that similar optimiza-
tions addressing algorithm structure, as well as sparse matrix-vector, are crucial for the subsequent development of
high-performance graphics processing units accelerated Krylov subspace iterative methods.

Keywords
Krylov subspace methods, iterative solvers, sparse linear systems, graphics processing units, BiCGSTAB

1. Introduction

Krylov subspace iterative methods (Saad, 2003) are
among the most popular for solving large sparse linear
systems. Against the background of an increasing num-
ber of computer systems featuring hardware accelera-
tors like graphics processing units (GPUs) (Kogge et al,
2008; top), the efficient use of the available computing
power requires their inclusion in the computation.
Moreover, the very high memory bandwidth of a GPU
(and an energy efficiency currently four to five times
higher than multicore central processing units (CPUs)
(Anzt et al., 2015)), motivate the development of new
software technologies for their use in sparse computa-
tions. A straightforward way to employ accelerators in
Krylov subspace solvers is to offload all matrix and vec-
tor computations to the device using library functions.
However, recent research has shown that this approach
may provide appealing performance improvement
against a CPU-restricted code, but fails to leverage the
full potential of the accelerator (Aliaga et al., 2013;
Anzt et al., 2014a). Using generic kernels provided by

libraries fails to give the benefits of data reuse, which is
a key optimization strategy for memory-bound compu-
tations and algorithms. Custom-designed kernels can
provide a work-around by merging multiple arithmetic
operations, and keeping data in shared memory when-
ever possible. Aside from that, the sparse matrix-vector
product needed to generate the Krylov subspace (Saad,
2003) is often the computationally most expensive part
of the algorithms. Hence, accelerating this kernel, e.g.
by accounting for the properties of the specific problem
and integrating it into the implementation, is often seen

1Innovative Computing Laboratory, University of Tennessee, Tennessee,

USA
2Swiss National Supercomputing Centre (CSCS), Lugano, Switzerland
3Oak Ridge National Laboratory, Tennessee, USA
4University of Manchester, Manchester, UK

Corresponding author:

Hartwig Anzt, Innovative Computing Laboratory, University of

Tennessee, Knoxville, Tennessee, USA.

Email: hanzt@icl.utk.edu

 at University of Manchester Library on July 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

as the major challenge when porting and optimizing
Krylov solvers on GPUs.

1.1 Related work

Although the memory-bound characteristics of sparse
iterative solvers pose a challenge when porting them to
throughput-processors like GPUs, significant research
efforts focus on deriving efficient implementations. As
the sparse matrix-vector product (SpMV) serves as the
backbone of many iterative solvers, the acceleration of
this stand-alone building block is often considered as
the key to enhancing the performance of the complete
class of iterative methods. Matrix storage formats and
sophisticated kernels accounting for the specific hard-
ware and matrix characteristics have been extensively
studied in literature (Bell and Garland, 2008; Monakov
et al., 2010; Kreutzer et al., 2013; Anzt et al., 2014b).
Performance comparisons reveal that leveraging the
computational power of GPU accelerators can also be
beneficial when considering the total iterative solver
runtime (Dorostkar et al., 2014; Li and Saad, 2013;
Lukash et al., 2012). Aside from research implementa-
tions, several open-source software packages provide
GPU-support for solving sparse linear systems
(MAGMA, b,c; NVIDIA, 2013a; MAGMA, a). The
implementation of the biconjugate gradient stabilized
method (BiCGSTAB) and the custom-designed kernels
we use for our analysis in this paper are taken from the
MAGMA (MAGMA, a) numerical linear algebra
library. The performance of the BLAS-1 and BLAS-2
CUDA kernels that are typically needed for all iterative
methods, can be improved by reducing the communica-
tion of the memory-bound operations to GPU main
memory. In Filipovic et al. (2013) the authors have
shown how this can be achieved by using a source-to-
source compiler that merges vector and dense matrix-
vector operations. Sparse iterative solvers have been
addressed with similar algorithmic modifications in
Aliaga et al. (2013), where the authors have shown how
custom-designed kernels improve performance and
energy-efficiency of a GPU implementation for the
Conjugate Gradient iterative solver. In Anzt et al.
(2014a), this idea was extended to a more generic
approach using the BiCGSTAB (van der Vorst, 1992)
algorithm as a target application; aside from applying
the aggregation of multiple arithmetic operations into a
single kernel to reduce GPU memory traffic and CPU-
GPU communication, the authors proposed a kernel
computing multiple dot products simultaneously, and
derived a model providing an a-priori approximation
of the expected performance improvement.

1.2 Outline

In this paper we extend these results by combining the
communication reduction ideas, with the optimization

of the sparse matrix-vector product. Also, we derive a
theoretical communication bound for the GPU imple-
mentation of the BiCGSTAB solver, and include a
model that predicts the performance savings. We struc-
ture the paper as follows; we begin in Section 2 with a
brief characterization of the Krylov subspace solvers,
and review the BiCGSTAB algorithm as a typical rep-
resentative. For this, we also introduce a baseline refer-
ence implementation, based on the cuBLAS library
which we use for further analysis. In Section 3 we pro-
pose modifications to the distinct building blocks typi-
cal of a Krylov subspace solver; in Section 3.1 we
discuss the importance of the sparse matrix-vector
product, and present a GPU kernel that computes the
multiplication at significantly higher performance than
the default CSR-based implementation. We derive
application-specific kernels in Subsections 3.2 and 3.3
by merging multiple arithmetic operations, and provide
a lower bound of the communication volume needed
for a parallel implementation of BiCGSTAB. On the
hardware platform we introduce in 4.1, we present the
performance results for the optimized algorithm-
specific kernels we developed in Sections 4.2, 4.3 and
4.4. Based on these modifications, in Subsection 4.5,
we derive a model quantifying the expected perfor-
mance improvements and use experimental results to
validate the model, revealing the superior performance
of the reformulated BiCGSTAB algorithm across the
complete range of SpMV dominance.

2. Krylov subspace solvers

Krylov subspace solvers (Saad, 2003) are among the
most widely used methods for solving sparse linear sys-
tems iteratively. The methods are based on the idea of
approximating the solution in a Krylov subspace of
increasing dimension. In the basic approach, the sub-
space of dimension d is generated by the system matrix
A, and a vector s as the subspace spanned by the pro-
jections of s under the first d powers of A, that is

K d(A, s)= spanfs,As,A2s, . . . ,Ad�1sg ð1Þ

To solve a system Ax = b of dimension n, Krylov
methods use a starting vector x0 and an initial residual
r0 = b2Ax0 to generate a sequence of approximations
xi in Ki(A, r0). In the absence of roundoff error and a
breakdown caused by division by zero, the exact solu-
tion is reached after a finite number of steps (Saad,
2003). However, in particular when enhancing the
method with a sophisticated preconditioner (Saad,
2003), a good approximation is typically available after
few iterations, much smaller than the theoretical limit,
which makes Krylov methods attractive as iterative sol-
vers. Among the most popular methods are the
Conjugate Gradient Method (Hestenes and Stiefel,
1952) for solving symmetric positive definite systems,

2 The International Journal of High Performance Computing Applications

 at University of Manchester Library on July 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

and the GMRES and BiCGSTAB algorithms for sol-
ving nonsymmetric linear systems of equations (Saad,
2003). While there exists a large variety of Krylov sub-
space solvers, they are all comprised of the following
building blocks:

1. Sparse matrix-vector product.
To generate the Krylov subspace, every iteration
contains at least one SpMV product1. Typically,
this operation accounts for a significant part of the
computational cost of the solver. Indeed, the
SpMV is memory bound as well as latency bound,
due to the irregular memory accesses to the vec-
tor’s elements. This makes it notoriously slow and
hard to optimize, and in the end being able to
achieve only a fraction of the peak performance of
modern architectures.

2. Reductions as part of scalar products.
In the generation of the Krylov subspace, the pair-
wise orthogonalization of the vectors has to be
ensured. This requires the computation of scalar
products, which include global reductions. Despite
parallelization approaches like the fan-in algorithm
(Ashcraft et al., 1990), reductions usually pose a
bottleneck when running on parallel platforms, as
they require synchronization and communication
between the processors.

3. Local vector updates.
Even though local vector updates are inherently
parallel and hence suitable for highly parallel
architectures like GPUs, they are also memory
bound. Therefore, optimizing the number of reads/
writes during the updates is a major goal towards
a significant performance improvement.

In order to accelerate Krylov subspace solvers, in
Section 3 we derive algorithm-specific kernels that
reflect the aforementioned building blocks, but improve
the performance by increasing the computational inten-
sity. For better cache reuse, we gather multiple vector
updates into a single kernel, and derive a parallel reduc-
tion kernel capable of handling multiple scalar products
simultaneously. Furthermore, we break up the barriers
between the building blocks by merging vector updates
with the first part of a scalar product into a single ker-
nel. Although we have shown (Anzt et al., 2014a) that
an equivalent kernel merging is possible for the sparse
matrix-vector product, we refrain from this modifica-
tion to maintain the genericness of the matrix-vector
kernel, but present an alternative to the basic CSR-
based kernel in Section 3.1, which achieves significantly
higher performance.

Although the focus of this paper is on the
BiCGSTAB solver, our algorithm redesign techniques,
new kernels, and performance improvements can be
projected easily through the developed main building
blocks to other Krylov subspace methods.

2.1 Biconjugate gradient stabilized method

The BiCGSTAB method was developed by van der
Vorst (1992) with the objective to improve stability and
convergence of the BiCG method. It belongs to the
above introduced class of Krylov subspace solvers and
can be used to solve linear systems of equations that are
not necessarily symmetric and positive definite (Saad,
2003). BiCGSTAB’s usually fast convergence makes it
an attractive candidate when targeting the numerical
solution of partial differential equations via finite ele-
ment or finite difference methods (Braess, 2007).

The BiCGSTAB method for solving the linear sys-
tem Ax = b, where A 2 R

n 3 n, b 2 R
n, and x 2 R

n is
the sought-after solution, outlined in Figure 1 (left
side). Here t sets an upper bound on the relative resi-
dual for the computed solution approximation xk, and
maxiter is a bound for the maximum number of itera-
tions. Besides the two sparse matrix-vector multiplica-
tions at lines 12 and 15 that usually dominate the
computational effort, every BiCGSTAB iteration, as
shown, can be expressed using the BLAS copy, axpy,
dot product, and norm routines. The floating point
operations (flops) for one iteration, including the resi-
dual computation, can be estimated 2 �SpMV+22n.
Each of the SpMVs count for 4nnz+2n additional
flops if using a CSR-based multiplication (see Section
3.1), where nnz is the number of nonzero entries in A.

An implementation of BiCGSTAB for GPU-
accelerated platforms (Sawyer, 2011) was originally
drafted as an example for a course on GPU-enabled
libraries. In that implementation, all matrix and vector
operations are handled by the accelerator using
NVIDIA’s cuBLAS library. The essential operations of
the iteration loop are given on the right side in Figure 1.
As the intention of this implementation was to provide
a high-performance BiCGSTAB through the highly
optimized cuBLAS library, which is a common and
highly efficient practice, we take it as a reference imple-
mentation to compare against the new developments.

3. Reformulation of the BiCGSTAB
algorithm

The reference implementation of BiCGSTAB using
cuBLAS functions, as presented previously, yields
appealing performance improvement compared to the
CPU code, but it also misses some performance
improvement opportunities. For example, a better
resource utilization can be achieved by improving the
sparse matrix-vector product and designing
application-specific routines, reducing the number of
kernel calls, GPU memory transfers and GPU-host
communications (Aliaga et al., 2013). To this end, a
reformulation of the algorithm in Figure 1 is inevitable.
Gathering similar operations (e.g. component-wise vec-
tor operations, dot products and scalar operations)

Anzt et al. 3

 at University of Manchester Library on July 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

allows the programmer to design algorithm-specific
kernels with higher computational intensity than the
replaced cuBLAS functions. Merging several arithmetic
operations into one kernel enables a better GPU utili-
zation by reducing the number of kernel calls and data
communications. While Figure 2 provides a general
overview of the original cuBLAS reference implementa-
tion and the new implementation featuring these
improvements, we discuss the distinct optimizations
and modifications we propose to the classical formula-
tion of the algorithm in the following sections.
Considering the building blocks identified in Section 2
to be characteristic for Krylov methods, we address the
optimization of the matrix-vector product in Section
3.1, the reductions related to scalar products in Section

3.2 and the reduction of memory transfers related to
parallel vector updates in Section 3.3. Note that in con-
trast to the approach in Anzt et al. (2014a), we refrain
from combining the matrix-vector multiplications with
other operations. Although this results in small perfor-
mance penalties, we argue that the flexibility of choos-
ing the SpMV kernel according to the target problem
has a higher priority. Thus, we want to point out that
our communication-avoiding (CA) optimizations are
for the standard Krylov methods, and we do not inves-
tigate the potential of breaking up the data dependency
between the sparse matrix-vector multiply and the dot
products as was seen in recent work on the s -step and
communication-avoiding Krylov methods (Hoemmen,
2010; Yamazaki et al., 2014).

Figure 1. Algorithmic description of the BiCGSTAB method (Barrett et al., 1994) (left), and a reference GPU implementation for
the iteration loop using the cuBLAS library (right).

Figure 2. Visualizing the reformulation of the reference BiCGSTAB implementation (left) to the optimized version (right). While all
parameters remain in GPU memory, note the explicit transfer of the residual back to the host in the last line.

4 The International Journal of High Performance Computing Applications

 at University of Manchester Library on July 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

3.1 Accelerating the sparse matrix-vector product

In the iterative solution of sparse linear systems with
the Krylov subspace methods, the matrix-vector prod-
uct (which generates the vector space) is usually the
dominant contributor to the overall computational cost
of each iteration. Hence, a significant effort is spent on
developing storage formats and corresponding compu-
tational kernels that are suitable for efficient execution
on the target architecture. In the spirit of reducing data
transfers, one key objective when targeting GPUs is to
allow for coalescent memory access in the matrix-
vector kernel. Aligning the data in memory does not
decrease the number of useful transfers, but it decreases
the number of ‘‘wasted’’ transfers, as every access
touches a set of bytes contiguous in memory (in the
case of NVIDIA GPUs it is 32 bytes NVIDIA). If a
request only uses a subset of these bytes, either by
requesting only a single floating point number, or sev-
eral non-contiguous entries scattered in memory, the
remaining transfer capacity is lost. Hence, a coalescent
memory access virtually decreases the data transfers by
reducing the wasted transfer capacity. Unfortunately,
no GPU kernel exists for the matrix-vector product
that is superior in terms of performance for all sparse
matrices. Instead, the performance varies depending on
the structure of the matrix. Typically, sparse matrices
exhibit varying sparsity patterns, and when used inside
iterative solvers, any given kernel can be outperformed
by another kernel for at least one matrix with just the
right structure. Hence, we do not claim that the sparse
matrix-vector kernel that we present next is the best
one available, but a performance analysis in Anzt et al.
(2014b) has shown that it achieves very good perfor-
mance on the wide range of tested matrices and it also
compares favorably to the highly-tuned implementa-
tions provided in NVIDIA’s cuSPARSE library
(NVIDIA, 2013a).

For dense matrices it is usually reasonable to store
all matrix entries in a consecutive position in the com-
puter memory. For sparse matrices, which are typical
targets for Krylov-subspace solvers and may be charac-
terized by a large number of zero elements, storing these
zeros is not only unnecessary for numerical properties,
but would clearly result in significant storage overhead.
Various storage layouts exist that aim to reduce the
memory footprint of the sparse matrix by storing only a
fraction of the elements explicitly (mostly the non-zero
ones), and do not store all other (zero-) elements
(Barrett et al., 1994; Williams et al., 2010; Bulucx et al.,
2011). We note that numerous ideas also exist on how
to benefit from additional matrix characteristics like
symmetry, tridiagonal form, or a special (and thus pre-
dictable) sparsity pattern. The CSR format (Barrett et
al., 1994) is based on the straightforward idea that only
non-zero entries of the matrix are stored. In addition to
the array of values containing the non-zero elements,
two integer arrays colind and rowptr are used to locate
the elements in the matrix, see Figure 3. This storage
format is often suitable when computing a sparse
matrix-vector product on processors with a deep cache
hierarchy, because it reduces the memory bandwidth
requirements to a minimum. However, CSR does not
allow for coalesced memory access which is important
when computing the same product on streaming-
processors like GPUs. Instead, the ELLPACK format
is preferable and provides padding the rows with zeros
to achieve a uniform row-length. This directly allows
for coalesced memory access, which we have already
identified as a key to optimizing data transfer. The
ELLPACK format requires no rowptr array, because
every row now contains the same number of elements
in memory. The storage overhead of ELLPACK is
determined by the’’longest row’’, which is the maximum
number of nonzero elements in one row of the matrix,

Figure 3. Dense and sparse matrix storage format representation (Anzt et al., 2014b). The memory requirement is visualized with
the grey areas. Notice that using SELL-C with the blocksize b = 2 (SELL-2), requires adding one row to the original matrix.
Furthermore, padding the SELL-P format to a rowlength divisible by 2 (t = 2), requires explicit storage of some additional zeros.

Anzt et al. 5

 at University of Manchester Library on July 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

see Figure 3. While this is usually compensated for by
the more efficient hardware usage when targeting
streaming processors, it is unlikely to be suitable for
cache-based processor architectures, as the explicitly
stored zero elements all have to be processed, which
consumes scarce resources (primarily the memory band-
width). One improvement that reduces the storage over-
head is the introduction of the sliced ELLPACK
format, which splits the original matrix into blocks of
rows, and each slice is then stored using the ELLPACK
format, see Figure 3. The resulting format is usually
abbreviated as SELL or SELL-C, where C denotes the
blocksize (Monakov et al., 2010; Kreutzer et al., 2013).
As the number of explicitly stored elements in each row
is no longer determined by the maximum of the non-
zero elements in one row of the matrix but by the’’lon-
gest row’’ in this block of rows, some of the slices may
have less storage overhead compared to the ELLPACK
format. The blocksize becomes the parameter that con-
trols the fill-in, in other words, using the blocksize of 1
(SELL-1) results in the CSR format, using a blocksize
of (the matrix dimension) n (SELL-n) results in the orig-
inal ELLPACK format. However, an additional integer
array pointing to the start of each slice is needed. The
idea of a blocking ELLPACK has been applied to block
matrices (Choi et al., 2010) where structured matrices
are stored by using a grid of small ELLPACK blocks of
auto-tuned size. Also, sliced ELLPACK can be
enhanced with a-priori row sorting (Kreutzer et al.,
2013) such that the rows with a similar number of non-
zero elements are gathered in one block. This obviously
reduces the fill-in further, but it is important to trade-
off between the cost of sorting and the acceleration of
the sparse matrix-vector product. In Kreutzer et al.
(2013), the authors also propose a trimmed sliced
ELLPACK format that arises as a hybrid combination
of SELL-C-s and CSR, but refrain from showing per-
formance results. In the remainder of their paper they
argue that the SELL-C-s format is suitable for cross-
platform usage and show in benchmark experiments
that it is capable of competing with other storage lay-
outs on different architectures.

Another approach for reducing the computational
overhead, without lowering the storage overhead,
involves storing the number of non-zero elements in
each row in an additional array and computing the par-
tial products only for the non-zero elements. This
approach was proposed in combination with assigning
multiple threads to one row of the matrix in Anzt et al.
(2014b), and the corresponding benchmark results
showed the superiority of this idea over the plain
ELLPACK format on GPUs. It is beneficial to assign
multiple threads to one row and integrate it into an
optimized hardware-aware implementation of the
sparse matrix-vector product for the SELL-C/SELL-C-
s matrix format (Anzt et al., 2014b). For this purpose

the SELL-P format (P for’’padded’’) was introduced as
a natural extension to the SELL-C/SELL-C- s with the
hardware capabilities in mind. The padding of the rows
with zeros is such that the rowlength of each block
becomes a multiple of the number of threads assigned
to each row, see Figure 3 for t = 2.

In the sparse matrix-vector product kernel for the
SELL-P format, the threads of the GPU thread-block
handle one slice of the partitioned ELLPACK. The
threads are arranged in a b 3 t 2D thread grid, where
b is the number of rows in one slice and t the number
of threads assigned to each row, see Figure 4. For each
slice, the kernel computes the number, max_, of neces-
sary multiply-add’s that each thread has to handle, and
the threads proceed with this information. Once all the
data is processed, the partial products are written into
shared memory, and a fan-in algorithm with an incre-
ment of the thread count computes the sum for each
row in shared memory. Accounting for the parameters
a and b in the SpMV operation y =a�Ax+b y, the
result is written back into the global memory. The grid
necessary to launch the thread blocks has to cover the
complete matrix, i.e. the number of blocks is equal to s,
the number of slices the matrix is partitioned into. As
this number is typically large, a 2D grid of thread
blocks, with both grid dimensions close to

ffiffi
s
p

, is suit-
able for efficient processing. The pseudo-code for the
kernel is provided on the left in Figure 5. The underly-
ing data layout, the memory access pattern, and the
reduction step are visualized in Figure 4.

3.2 From dot product to matrix-vector multiply

NVIDIA’s cuBLAS library provides an efficient rou-
tine to compute dot products on the GPU. However,
as soon as multiple dot products need to be computed
consecutively, performance suffers from memory access
and the fact that the reduction for each vector is
handled consecutively and independently from one
another. This motivated us to come up with a kernel
capable of computing multiple dot products at once
and reducing the vectors simultaneously. Although the
most common form of BiCGSTAB only requires the
parallel computation of two dot products, we aim for a
general approach here. As an additional use case, we
consider the fact that the computation of a set of dot
products with one vector being part in all of them can
also be seen as a matrix-vector multiplication ATx,
where A is a tall and skinny matrix (number of rows of
A far excceeds the number of columns).

The common practice in parallel matrix-vector mul-
tiplication is to assign a fixed set of rows/columns to
each processing unit for the A non-transpose/transpose
cases, respectively. But this approach becomes ineffi-
cient if A consists of less rows/columns than the number
of the processing units available. Especially when

6 The International Journal of High Performance Computing Applications

 at University of Manchester Library on July 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

targeting GPUs, handling columns by threads is not
suitable for the ATx computation, as the typically used
thread number will exceed the number of columns by
orders of magnitude. The MAGMA library (MAGMA,
a), developed at the Innovative Computing Lab (ICL)
at the University of Tennessee, overcomes this by
assigning one SMX processor to each column, and
splitting each column into chunks that are then handled
by different threads. To have all 13 SMXs of the K20c
GPU working, the matrix needs at least 13 columns
(Corporation, 2012). Each column is then split into
parts according to the block size, and each thread
strides over the complete column, handling one element
in every part. In the end, the partial sums computed by
the distinct threads are collected using the fan in
summation.

Using the ideas based on the dot product where
computing units process in a tree-reduction fashion, we
extend the implementation proposed in Aliaga et al.
(2013) to process multiple vector products

simultaneously. The advantage of this algorithm is that
instead of only one, all SXMs are utilized to compute
the reduction of a single column, with the drawback of
additional memory usage. Like in the MAGMA imple-
mentation, each thread of a thread block (handled by
one SXM) strides over the complete column, but the
usage of all SMXs reduces the number of column
chunks and the computations of each thread consider-
ably. The price for this is that every multiprocessor,
once the reduction for the thread block is completed,
has to write data to the global memory and synchro-
nize with the other multiprocessors after each reduction
step, as the partial sums computed by the different
thread blocks are used in the next reduction step.

By reordering the operations in the BiCGSTAB
method, we can gather two sets containing two consec-
utive dot products using the same vector in both com-
putations. For efficient processing, the merged
implementation uses the vector q = [r_hat—r—p—v—
s—t] containing the distinct vectors of the reference

Figure 4. Visualization of the SELL-P memory layout and the SELL-P SpMV kernel, including the reduction step using the blocksize
b = 4 (corresponding to SELL-4), and t = 2 (Anzt et al., 2014b).

Anzt et al. 7

 at University of Manchester Library on July 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

Figure 5. Left: SpMV kernel implementation for the SELL-P sparse matrix format for t = 8 (Anzt et al., 2014b). Right: Algorithm-
specific kernel implementation for magma_dbicgmerge_reduce2 using a block size of 256 Anzt et al. (2014a).

8 The International Journal of High Performance Computing Applications

 at University of Manchester Library on July 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

implementation. In the accelerated version of
BiCGSTAB, we merge the computation of (multiple)
dot products with other arithmetic operations where
possible. As an example, the right side of Figure 5 pro-
vides the code for the magma_dbicgmerge_reduce2
kernel.

3.3 Merging multiple arithmetic operations into one
kernel

Optimizing communications in memory-bound algo-
rithms is often impossible by using only BLAS func-
tions. For example, the BLAS-based computation of

pk : = rk�1 +b pk�1 � vk�1vk�1ð Þ

from line 11 of Figure 1 would result in three BLAS
calls (lines 4-6 in Figure 1, right). Every routine reads
the data from the main memory, computes, and writes
the result back. As vector operations (Level 1 BLAS)
are memory-bound, the 8n+4 memory transfers
(5n+4 reads and 3n writes) limit the performance.
Significant improvements can be achieved by ‘‘merging’’
the BLAS functions into a new kernel (see Section 4.4,
Figure 9), where data movement is reduced down to the
optimal (for this particular case 3n+4 reads and n
writes).

Deriving a model reflecting the total data communi-
cation volume of one BiCGSTAB iteration is difficult
as the memory footprint of the sparse matrix-vector
products depends on the used storage format, the ker-
nel implementation and the matrix characteristics.
While the memory volume for the matrix in a certain
format is usually available (nnz floating point numbers
and nnz+ n+1 integers for CSR, see Section 3.1), the
computation of the product with a vector x requires
(for matrices containing off-diagonal entries) typically
more than n additional memory reads, as entries of x
are needed multiple times and may not all be kept in
cache. Against this background, and with the motiva-
tion to keep the modularity of the SpMV, we introduce
the constant CSpMV reflecting the data volume associ-
ated with the matrix-vector products. Note, for the
CSR-based SpMV we use in the cuBLAS reference
implementation, this constant has a lower bound of
2nnz+2n reads and n writes assuming a well-defined
linear system and the same data volume for integers
and floating point numbers.

For the optimization of data transfers, we introduce
the following proposition, providing a lower bound of
the necessary communication volume:
Theorem 1 (Proposition). The optimal communication
for a parallel implementation of the BiCGSTAB iteration
from Figure 1, which preserves the modularity of the
matrix vector multiplication, that is not accounted for in
the communication cost, is 18n where n � 2 is the matrix
size.

Proof. Let us assume the parallel computing plat-
form is equipped with n (n � 2) independent proces-
sors, where n is the size of the linear system to which
the iteration method is applied. Furthermore, each pro-
cessor may be equipped with cache sufficiently large to
keep all scalars and one component of each vector used
in the algorithm, in local memory. We refer to this
setup as’’data-optimal layout,’’ as all vector operations
can be executed in parallel without partitioning the vec-
tors. Communication between these n processors is pos-
sible via broadcast (one-to-all messages). This allows
the system to compute dot products by the processors
consecutively, broadcasting their local sums, and add-
ing any incoming partial sums to form the dot product.
In this scenario, all vector updates and local sums can
be computed locally without accessing the global mem-
ory. The only data read/write phases are at the begin-
ning and end of a processing phase. These phases are
defined by the sparse matrix vector products: the mod-
ularity of the SpMV building block may require a rear-
rangement of the processors and flushing all local
vector memory (the scalars may be kept). Hence, before
each SpMV, all data that will be needed in the future
has to be written to the global memory, and after com-
pletion of the SpMV, the vectors for the next phase
have to be read from global memory. As a result, the
iteration loop of the BiCGSTAB has two vector-
parallel computation phases interspersed by the SPMV
kernels:

1. VEC1: the computation of a and updating s (line 13-
14 of Figure 1, left side);

2. VEC2: the remaining computations, neglecting the
SpMVs (line 16-19+8-11 of Figure 1, left side).

Obviously, this data-optimal layout catches the lower
bound of data transfers, as any setup with more proces-
sors results in idle processors. Any setup with less pro-
cessors requires one processor to load multiple entries
for each vector, perform multiple broadcasts of partial
sums for a dot product, and write multiple entries of
each vector to global memory. For this reason, we now
use the data-optimal setup to prove the proposition by
mathematical induction.

1. Induction hypothesis.
For a data-optimal setup of dimension n (n
unknowns in the linear system, n processors
P1, . . . ,Pn), the minimum data transfer volume
for one BiCGSTAB iteration preserving SpMV
modularity is 18n.

2. Initial step.
Let n = 2. In the vector-parallel computation
phase VEC1, both processors need to read their
local value of r0, r, and v, resulting in 6 data trans-
fers. The computation of the dot product a =

Anzt et al. 9

 at University of Manchester Library on July 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

hr0,vi requires two broadcasts as it gets formed out
of two partial sums. Adding these, the processors
form a and compute s[i] = r[i]2a�v[i], (i = 1,2) in
local memory. As the SpMV in line 15 requires
flushing all local vector memory, 2 data transfers
are necessary to write the generated s to global
memory. This results in 10 data transfer units for
the VEC1 vector computation phase.
The data transfer cost for VEC2 can be obtained
similarly; while the respective components of r can
be generated locally, s, t, x, p, r0 and v have to be
read from global memory, resulting in 12 memory
reads for the case of n = 2. Four dot products
(hs,ti, ht,ti, hr,ri, hr0,ri) require 8 data transfer
units, and writing x, r, and p to global memory
requires another 6. By adding the 26 data transfers
of VEC2 to the 10 data transfers of VEC1 we obtain
36 (= 18 � 2) data transfers all together.

3. Induction step.
Consider a system of n+1 unknowns and a subset

of n processors P1, . . . ,Pn that handle the vector

entries from 1 to n. This requires 18n data trans-

fers, but to compute the correct scalars, the left

processorPn+ 1 has to broadcast the n+1-th par-

tial sum of the dot products. This requires Pn+ 1

to read the necessary data from global memory (3

reads for VEC1, 6 reads for VEC2), performing the

broadcasts (5 in total) and writing the n+1 -th

component of s, r, x and p to global memory.

Hence, 18 additional data transfers are required,

resulting in a total data communication volume of

18n+18 = 18(n+1).

Remark 1 We assumed the flushing of the local
memory does not affect the scalars. This assumption
may not be satisfied under some circumstances, but the
additional cost of one processor writing the scalars to
global memory before starting the SpMV kernel, and
broadcasting the scalars after SpMV completion,
results in O(1) additional data transfer units that may
be neglected for large n.

Remark 2 For a linear system of dimension 1, the
lower bound does not hold, the dot products does not
require a reduction phase.

Subsequently, we show that the optimization intro-
duced in Figure 2 reaches this lower bound for the given
GPU hardware consisting of fewer than n processors.
Using this aforementioned notation, we compare in
Table 1 the total GPU memory access in one
BiCGSTAB iteration. To account for the additional
reduction step that may be necessary when computing
dot products, we included the term O(logbs(n))½ �, which
is only relevant for large vectors. Not considering the
sparse matrix-vector multiplications (2 �CSpMV per itera-
tion), we still have 25n+9n memory transfers in the
cuBLAS reference implementation and 14n+4n mem-
ory transactions in the accelerated version (left and
right side of Table 1, respectively). Hence, we succeed in
realizing the theoretical optimization potential, and
under the assumption that memory reads and writes are
similarly expensive, we may, depending on the domi-
nance of the matrix-vector products and the reduction
phase of the dot products, expect a performance
improvement of up to 47% when replacing the cuBLAS
reference implementation with the optimized code.

Table 1. Comparison of GPU memory access for the BLAS-based BiCGSTAB (see right of Figure 1) and the merged variant. The
term O(logbs(n))½ � reflects the additional reduction step necessary in the computation of scalar products for large problem sizes.

BLAS-based BiCGSTAB Merged BiCGSTAB

line2 read write merged into read write

4 n+O(1) n p_update 3n+O(1) n
5 2n+O(1) n
6 2n+O(1) n
7 CSpMV SpMV CSpMV

8 2n+O(1) O(1) reduce1 2n+ O(logbs(n))½ � 1+ O(logbs(n))½ �
9 n n s_update 2n+O(1) n
10 2n+O(1) n
11 CSpMV SpMV CSpMV

12 2n+O(1) O(1) reduce2 2n+ O(logbs(n))½ � 1+ O(logbs(n))½ �
13 2n+O(1) O(1)
14 2n+O(1) n xr_update+ reduce3 5n+ O(logbs(n))½ � 2n+ O(logbs(n))½ �
15 2n+O(1) n
16 n n
17 2n+O(1) n
18 2n+O(1) O(1)
2 2n+O(1) O(1)
sum3 25n+O(1) 9n+O(1) sum3 14n+ O(logbs(n))½ � 4n+ O(logbs(n))½ �
2see right of Figure 1; 3not accounting for the SpMV kernels;

10 The International Journal of High Performance Computing Applications

 at University of Manchester Library on July 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

4. Numerical results and experiments

4.1 Experimental setup

In this paper we pursue an incremental approach,
where we support all algorithmic and conceptual modi-
fications to the reference implementation with experi-
mental results. We obtain those results from a Tesla
K40 GPU that belongs to the Kepler line of NVIDIA’s
hardware accelerators, with a theoretical peak perfor-
mance of 1,682 GFlop/s (double precision). The host
system has a theoretical peak of 333 GFlop/s, main
memory size of 64 GB, and the theoretical bandwidth
is up to 51 GB/s. On the K40 GPU, the 12 GB of main
memory, accessed at a theoretical bandwidth of
288 GB/s, is sufficiently large to keep all the matrices
and all the vectors needed in the iteration process. We
limit our analysis to double precision, and to ensure the
accuracy of the data we usually run every experiment
1,000 times and either average the values or report the
total time. The host processor was an Intel Xeon E5
(codename: Sandy Bridge, model 0x2D, family 0x06)
in a two-socket configuration featuring 8 cores in each
socket with HyperThreading enabled and the nominal
frequency was 2.6 GHz. The implementation of all
GPU kernels is realized in CUDA cud (2009), version
6.0 NVIDIA (2013b), using a thread-block size of 256.
For the experiments, we use a set of test matrices taken
from the University of Florida matrix collection
(UFMC)2. While the matrices were selected to cover a
broad spectrum with respect to dimension and sparsity
(see Figure 6), some key characteristics are summarized
in Table 2.

4.2 Performance of the SELL-P SpMV

In Anzt et al. (2014b), a comprehensive performance
comparison reveals the competitiveness of the SELL-P
SpMV against other highly-tuned implementations,
including NVIDIA’s in-house developments available

via the cuSPARSE library (NVIDIA, 2013a). A com-
parison to multicore CPU approaches is available in
Anzt et al. (2015). We refrain from including all options
in this paper, but instead limit our focus on the poten-
tial improvement obtained by replacing the standard
CSR-based kernel with the SELL-P format. In Table 3
we list the performance achieved by either of the imple-
mentations, and, in the case of superior SELL-P perfor-
mance, the speedup s is obtained by replacing the
standard CSR SpMV. The results reveal that no
overall-superior SpMV format exists, and particularly
for very sparse system, the basic CSR may provide a
higher performance, see APACHE _2, BLOWEYBQ, ECOLOGY

_2, and G3 _CIRCUIT of Table 3. In a realistic scenario,
comparing the SpMV performance for the target
matrix allows the user to choose a suitable format.

4.3 Tuning of merged dot products

The limited cache size in GPUs poses restrictions when
aiming for the simultaneous reduction of multiple

Figure 6. Sparsity structure of the selected test matrices.

Table 2. Description and properties of the test matrices.

Matrix #nonzeros (nnz) Size (n) nnz/n

AIRFOIL_2D 259,688 14,214 18.27
APACHE_2 4,817,870 715,176 6.74
AUDIKW_1 77,651,847 943,645 82.28
BLOWEYBQ 49,999 10,001 5.00
BMW3_2 11,288,630 227,362 49.65
CAGE_10 150,645 11,397 13.22
ECOLOGY_2 4,995,991 999,999 5.0
FV1 85,264 9,604 8.88
G3_CIRCUIT 7,660,826 1,585,478 4.83
POISSON_3DA 352,762 13,514 26.10
PRES_POISSON 715,804 14,822 48.29
TREFETHEN_2000 41,906 2,000 20.95
TREFETHEN_20000 554,466 20,000 27.72

Anzt et al. 11

 at University of Manchester Library on July 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

vectors, as the shared memory is the key to the effi-
ciency of the implementation. We overcome this bottle-
neck by processing the data in chunks of vectors
allowing for efficient cache usage. Note that the num-
ber of vectors in every chunk is dependent on the hard-
ware characteristics, the block size, and the precision
format used, but independent of the vector length.

According to the performance shown on the left in
Figure 7 (see line labeled MDOT for the multi-dot-
product kernel) a chunk size of 4 seems reasonable for
our implementation. The obtained kernel using the
chunk-size of 4 and labeled as MDGM in Figure 7
shows minor performance loss when hitting the reload
barrier, but then stabilizes around 8 Gflop/s, outper-
forming the sequence of cuBLAS dot products by a fac-
tor of two. The difference becomes smaller for larger
vectors, as the kernels approach their asymptotic per-
formance peaks of about 18 and 14 Gflop/s, respec-
tively (see left of Figure 8). The comparison with the
matrix-vector product kernels is interesting. While
NVIDIA’s implementation (CUGeMV) is not at all

able to keep up with the MDGM for tall and skinny
matrices, the matrix-vector product provided by
MAGMA (MAGMA _GeMV), where one SXM han-
dles one vector, catches up with the cuBLAS dot prod-
uct as soon as four dot products are needed, and thus,
4 SXMs are used. On the right of Figure 8 we show the
superiority areas of MDGM and MAGMA _GeMV as
a function of the vector length. As expected, the more
column-dominated a matrix is, the more reasonable the
usage of MDGM is where all SXMs are used for every
row. A direct comparison of MDOT against NVIDIA’s
dot product for different vector sizes is given on the left
in Figure 8. The first observation is that, when comput-
ing only one dot product, the MDGM outperforms the
cuBLAS implementation for small lengths, while
cuBLAS yields slightly higher performance as soon as
the vector length exceeds 106. Close inspection reveals
that the performance of MDOT decreases slightly at
around 200,000. This stems from the iterative reduction
procedure; for larger vectors one reduction step is not
sufficient, rather a second kernel is needed (see line

Table 3. Performance comparison between CSR-SpMV and the SELL-P SpMV, speedup and improvement obtained by replacing the
CSR SpMV where beneficial.

Matrix CSR SpMV (GFlop/s) SELL-P SpMV (GFlop/s) speedup s improvement zM

AIRFOIL_2D 3.52 9.93 2.81 64 %
APACHE_2 9.81 8.08 2 2
AUDIKW_1 1.89 22.12 11.68 91%
BLOWEYBQ 5.16 4.70 2 2
BMW3_2 2.06 22.69 11.03 91%
CAGE_10 4.04 8.88 2.20 54%
ECOLOGY_2 10.04 6.02 2 2
FV1 5.47 6.20 1.13 12%
G3_CIRCUIT 6.49 5.68 2 2
POISSON_3DA 2.22 8.47 3.81 74%
PRES_POISSON 2.84 18.35 6.45 84%
TREFETHEN_2000 2.17 6.45 2.98 66%
TREFETHEN_20000 1.45 16.75 11.52 91%

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14 16

G
Fl

op
/s

number of vectors

CUDOT
MDOT
MDGM

CUGEMV
MAGMA_GeMV

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14 16

G
Fl

op
/s

number of vectors

CUDOT
MDOT
MDGM

CUGEMV
MAGMA_GeMV

Figure 7. Performance comparison between cuBLAS dot product, the developed simultaneous dot product implementations
MDOTand MDGM, and the matrix-vector products from NVIDIA and MAGMA, respectively for a vector length of 100,000 (left)
and 1,000,000 (right).

12 The International Journal of High Performance Computing Applications

 at University of Manchester Library on July 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

62–72 in magma_dbicgmerge_reduce2 on the right
of Figure 5 in the Appendix). This also impacts the
memory traffic, with the memory reads rising form 2n
to 2n+O(logbs(n)) and the writes from 1 to logbs(n) for
large vectors (bs denotes the block-size used in the
GPU kernel implementation).

When adding a second dot product with one vector
shared by both operations (see data labeled MDOT(2)
and cuBLAS(2) in Figure 8, left) the performance of
MDOT increases by about one third due to reuse of
one vector and the simultaneous reduction of two vec-
tors. For cuBLAS we do not observe any performance
improvement when executing two consecutive dot prod-
ucts. Improvement would only become possible by
using a compiler capable of detecting the reuse of one
vector.

4.4 Reducing communication through merged kernels

Figure 9 shows the new ‘‘merged’’ kernel updating the
vector p that we discussed in Section 3.3. As the data
movement is reduced down to 3n+4 reads and n writes
(50% reduction against the set of cuBLAS routines), we

expect an asymptotic speedup of 2, which is reflected on
the right side of Figure 9 where the update of p using
cuBLAS functions reaches, for large vector sizes, only
11.5 Gflop/s compared to 22.4 Gflop/s of the mag-
ma_dbicgmerge_p_update kernel given on the right
in Figure 9.

4.5 Experimental comparison with performance
model guiding the optimizations

In the previous sections, we have proposed different
optimizations and modifications to the BiCGSTAB
algorithm structure and its implementation on a GPU-
accelerated system. In this section, we aim for a theore-
tical model quantifying the improvements that the
modifications are expected to achieve in experiments
using the set of test matrices introduced in Section 4.1.
In Table 4, we profile the cuBLAS reference implemen-
tation for the different test matrices. Step by step we
now develop a model providing estimations for the sav-
ings rendered by the modifications we proposed in the
previous sections.

Figure 8. Left: Performance comparison (double precision) between cuBLAS and MDOTexecuting 1 and 2 vector products. Right:
Superiority areas of MDGM and MAGMA’s matrix-vector kernel.

Figure 9. Left: cuBLAS library calls and an algorithm-specific kernel (labeled MAGMA) for the update of vector p (see line 11 in
Figure 1). Right: Comparison of the respective performance.

Anzt et al. 13

 at University of Manchester Library on July 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

An almost problem-independent improvement is the
reduction of memory transfers we realized in Section
3.3, where we merged multiple arithmetic operations
into one kernel. While we left the sparse matrix-vector
product untouched, we aggregated vector updates, and,
whenever possible, included the first part of a scalar
product computation. Hence, an accurate model would
require distinguishing between the’’reading’’ and the’’re-
duction’’ phase of dot products. However, we argue
that the’’reduction’’ part is usually dominating the com-
putational cost, and exclude the dot products from the
memory-improved parts.

Against the background of estimating the memory
savings for the remaining parts as
hmemory =

25n+ 9n
14n+ 4n

’47% due to reduced memory trans-
fers in the memory-bound algorithm, a very simple
model estimating the expected savings is given by

Pmemory = 1� TMERGE

TcuBLAS

=(1� SpMV� dot)3 hmemory

ð2Þ

Ordering the matrices according to the combined
SpMV and dot dominance (see Table 4), we visualize
the savings obtained by the reduced memory transfers
in Figure 11 (see’memory’). This model is independent
of the characteristics of the target matrix and the
applied sparse matrix-vector kernel, as we did not
merge the SpMV with any other operation to maintain
the genericness of the algorithm. The size of the prob-
lem, already impacting the dominance of
(SpMV+dot) operations, becomes even more impor-
tant as soon as we extend the model by also accounting
for the improvements rendered by the aggregated dot
product (MDOT) we proposed in Section 3.2, which is
capable of computing multiple dot products simultane-
ously. The improvements when switching from
cuBLAS to MDOT are dependent on the vector size,
and in order to quantify them, we run experiments on
the sequence of dot products that occur in the

BiCGSTAB algorithm; two sets of consecutive dot
products sharing one of the vectors and one separate
dot product (see left of Figure 10). For the remainder
of the paper, we use the following function (produced
with a regression fit of the experimental results) to
approximate the runtime savings (shown on the right
of Figure 10)

F (n)=
1

100

1

10�7 3 n+ 0:018
+ 8:0

� �
ð3Þ

We now combine the improvements due to data
locality of MDOT in equation (4), which models the
expected improvement that depends on the matrix size
n, and the relative portion of the sparse matrix-vector
kernel (SpMV), and the dot product (dot) in one itera-
tion, respectively. Using this equation, it is possible to
predict the runtime savings when switching from the
cuBLAS to the merged implementation without chang-
ing the sparse matrix-vector kernel, when having
knowledge about the matrix size exclusively (visualized
in Figure 11 as’memory+dot’).

Pmemory+dot =hmemory 3 (1� SpMV� dot)+F (n)3 dot

ð4Þ

Predicting the improvements obtained by also
replacing the CSR-SpMV with a more sophisticated
matrix-vector kernel requires detailed knowledge of the
characteristics of the sparse matrix. Although
approaches exist to classify sparse matrices for SpMV
performance prediction (Malossi et al., 2014), we limit
our model to the experimental SpMV performance
analysis providing the data given in Table 3.
Combining the listed improvements obtained by
switching to the SELLP-SpMV with the time fraction
spent on the sparse matrix-vector kernel (see Table 4),
we can extend the model to account for the reduced
memory transfers, the aggregated dot products and the
improved SpMV

Table 4. Profiling of the cuBLAS reference implementation, all timings are for 1000 BiCGSTAB iterations.

Matrix total (s) SpMV (s) dot (s) p update (s) s update (s) x+ r update (s)

AIRFOIL_2D 0.79 0.43 (54%) 0.26 (33%) 0.03 (4%) 0.03 (3%) 0.04 (5%)
APACHE_2 3.94 2.37 (60%) 0.57 (15%) 0.33 (8%) 0.21 (5%) 0.45 (11%)
AUDIKW_1 190.92 188.94 (99%) 0.70 (0%) 0.42 (0%) 0.27 (0%) 0.58 (0%)
BLOWEYBQ 0.41 0.06 (15%) 0.25 (61%) 0.03 (7%) 0.02 (6%) 0.04 (9%)
BMW3_2 25.26 24.50 (97%) 0.38 (01%) 0.12 (0%) 0.08 (0%) 0.16 (1%)
CAGE_10 0.60 0.21 (36%) 0.28 (47%) 0.03 (5%) 0.02 (4%) 0.04 (6%)
ECOLOGY_2 4.30 2.24 (52%) 0.71 (16%) 0.45 (10%) 0.28 (7%) 0.61 (14%)
FV1 0.48 0.10 (21%) 0.28 (59%) 0.03 (6%) 0.02 (5%) 0.04 (9%)
G3_CIRCUIT 6.77 3.69 (55%) 0.98 (15%) 0.69 (10%) 0.44 (6%) 0.95 (14%)
POISSON_3DA 1.24 0.85 (69%) 0.28 (23%) 0.03 (2%) 0.03 (2%) 0.04 (3%)
PRES_POISSON 1.63 1.27 (78%) 0.26 (16%) 0.03 (2%) 0.03 (2%) 0.04 (2%)
TREFETHEN_2000 0.51 0.15 (30%) 0.26 (52%) 0.03 (5%) 0.02 (4%) 0.03 (7%)
TREFETHEN_20000 1.45 1.03 (71%) 0.31 (21%) 0.03 (2%) 0.03 (2%) 0.04 (3%)

14 The International Journal of High Performance Computing Applications

 at University of Manchester Library on July 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

Pmemory+dot+SpMV = (1� SpMV� dot)

3 hmemory +F (n)3 dot+SpMV3 zM

ð5Þ

Comparing the predictions Pmemory+dot+SpMV

visualized as’memory+dot+SpMV’ in Figure 11
with data obtained from runtime experiments based on
1000 BiCGSTAB iterations (labeled as’experimental’),
we observe that the model is in most cases able to pro-
vide very good estimations, better than the linear model
based exclusively on the memory improvement, and the
model Pmemory+dot.

The acceleration shown in Figure 11 breaks down
into improvements coming from applying the kernel
fusion technique to reduce the communication, and,
for some matrices, the improvements coming from the
faster SpMV kernel. A detailed analysis on these con-
tributions can be found in Table 5. Although double
precision accuracy is usually considered mandatory for

scientific computing, we also include single precision
results, as techniques like iterative refinement (Buttari
et al., 2007; Baboulin et al., 2009) allow us to leverage
the single-precision performance of GPUs while main-
taining double-precision accuracy of the solution (Anzt
et al., 2010). As the CSR and SELL-P data structure
for the matrices consist of integer and floating point
arrays, the SpMV acceleration for single precision can
be quite different than the double precision accelera-
tion. At the same time, the consistent communication-
related performance improvements can be used to ver-
ify the model’s accuracy.

Beyond the successful validation of the derived
model, we observe that the main goal of our work was
achieved as well; the new BiCGSTAB implementation
outperforms the cuBLAS reference implementation for
all test cases. Depending on the matrix characteristics,
the merged version based on either the CSR or the
SELL-P matrix-vector kernel achieves runtime reduc-
tions between 20% and 90%. The fact that these
improvements are distributed over the spectrum of the
SpMV dominance shows that the modifications have
to go hand-in-hand to ensure problem-independent
performance improvement.

5. Conclusion

Taking the BiCGSTAB method as representative for a
Krylov subspace solver, we have investigated how to
leverage the performance potential of graphics process-
ing units. The optimized implementation reformulates
the algorithm, merges multiple arithmetic into
algorithm-specific kernels to reduce the memory traffic,
keeps all data in GPU memory to remove pressure
from the PCI connection, uses new highly-efficient dot
product kernels able to reduce multiple dot products
simultaneously, and replaces the standard CSR-based
matrix-vector product by the SELL-P kernel where
beneficial. Compared to a reference implementation
where the arithmetic operations of the mathematical

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

G
Fl

op
/s

vector length n in 10^3

MDOT
CUBLAS

0

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 1400 1600 1800 2000

im
pr

ov
em

en
t (

%
)

vector length n in 10^3

MDOT vs. CUBLAS
approximation

Figure 10. Performance comparison (left) and size-dependent runtime improvement (right) between cuBLAS and MDOT in the
sequence of dot products in BiCGSTAB.

Figure 11. Estimated (blue) and experimental (red)
performance improvement obtained by replacing the cuBLAS
reference implementation with the reformulated version,
depending on the matrix-vector kernel dominance in the original
code.

Anzt et al. 15

 at University of Manchester Library on July 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

formulation are directly translated into cuBLAS func-
tion calls, the new implementation yields appealing per-
formance improvements from 20% to 90% for
matrices taken from the University of Florida Matrix
Collection. Furthermore, we have derived a model that
succeeds in predicting the performance improvements.
This model is based on the reduced memory accesses,
the faster execution due to our new and optimized dot
product, and the accelerated SpMV. While we focused
on BiCGSTAB, the necessity of method-specific ker-
nels to achieve high performance on GPUs also applied
to other Krylov subspace methods. Deriving models
similar to ours may provide a-priori insight into
whether a specific solver is suitable for a custom-
designed GPU implementation when considering the
achieved performance improvements. Future research
should focus on including preconditioner techniques, as
preconditioning is often the key to efficiency when sol-
ving sparse linear systems via Krylov subspace meth-
ods. Also, the integration of a matrix powers kernel
may yield additional benefits due to reduced communi-
cation and synchronization.

Funding

This material is based upon work supported by the National
Science Foundation under Grant No. ACI-1339822,
Department of Energy grant No. DE-SC0010042, and the
Russian Scientific Fund, Agreement N14-11-00190.

Notes

1 Using communication-avoiding approaches like matrix
powers kernel (Hoemmen, 2010), the matrix-vector prod-
ucts may be grouped, but it is still possible to map them
to the respective iterations.

2 UFMC; see http://www.cise.ufl.edu/research/
sparse/matrices/

References

(????) The top 500 list, http://www.top.org/.
NVIDIA Corporation (2009) NVIDIA CUDA Compute unified

device architecture programming guide. NVIDIA Corporation.
Aliaga J, Perez J, Quintana-Orti E and Anzt H (2013) Refor-

mulated conjugate gradient for the energy-aware solution

of linear systems on GPUs. In: Parallel Processing

(ICPP), 2013 42nd International Conference on., Lyon, 1-

4 October 2013, pp. 320–329. DOI:10.1109/ICPP.2013.41.
Anzt H, Heuveline V and Rocker B (2010) Mixed precision

error correction methods for linear systems: Convergence

analysis based on Krylov subspace methods. In: Jonasson

K (ed) PARA 2010, Part II, LNCS 7134. Heidelberg:

Springer, pp. 237–248.
Anzt H, Sawyer W, Tomov S, Luszczek P, Yamazaki I and

Dongarra J (2014a) Optimizing Krylov subspace solvers

on graphics processing units. In: IPDPSW, 2014 Proceed-

ings of the IEEE International Parallel & Distributed Pro-

cessing Symposium Workshops (IPDPSW), Phoenix, AZ,

19–23 May 2014, pp. 941–949. Washington, DC: IEEE

Computer Society.
Anzt H, Tomov S and Dongarra J (2014b) Implementing a

sparse matrix vector product for the SELL-C/SELL-C- s

formats on NVIDIA GPUs. Technical Report, University

of Tennessee, USA, April.
Anzt H, Tomov S and Dongarra J (2015) Energy efficiency

and performance frontiers for sparse computations on

GPU supercomputers. In: Proceedings of the Sixth Interna-

tional Workshop on Programming Models and Applications

for Multicores and Manycores (PMAM ’15) (eds P Balaji,

M Guo and Z Huang), San Francisco, CA, February, pp.

1–10. New York, NY: ACM.
Ashcraft C, Eisenstat SC and Liu JWH (1990) A fan-in algo-

rithm for distributed sparse numerical factorization. SIAM

J. Sci. Stat. Comput. 11(3): 593–599.
Baboulin M, Buttari A, Dongarra JJ, Langou J, Langou J,

Luszczek P, Kurzak J and Tomov S (2009) Accelerating

scientific computations with mixed precision algorithms.

Computer Physics Communications 180(12): 2526–2533.

Table 5. Performance improvement breakdown [%] for the kernel fusion and the faster SpMV kernel using single or double
precision.

Double precision Single precision

Matrix fusion SpMV total

AIRFOIL_2D 25.54 33.52 59.066 22.83 38.20 62.03
APACHE_2 14.63 - 14.62 16.61 - 16.61
AUDIKW_1 0.00 90.94 90.94 0.03 89.09 88.63
BLOWEYBQ 61.35 - 61.35 56.23 - 56.23
BMW3_2 0.48 89.05 89.53 0.01 81.93 81.71
CAGE_10 35.03 19.63 54.66 31.18 30.86 62.04
ECOLOGY_2 17.49 - 17.49 13.73 - 13.73
FV1 45.16 3.38 48.54 40.55 3.21 43.77
G3_CIRCUIT 16.44 - 16.44 13.43 - 13.43
POISSON_3DA 16.77 51.21 67.98 18.38 46.68 65.07
PRES_POISSON 10.98 66.82 77.80 9.00 68.91 77.91
TREFETHEN_2000 42.88 17.52 60.40 42.86 28.17 71.04
TREFETHEN_20000 12.83 66.47 79.31 11.22 74.79 86.01

16 The International Journal of High Performance Computing Applications

 at University of Manchester Library on July 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

Barrett R, Berry M, Chan TF, Demmel J, Donato J, Dongarra

J, Eijkhout V, Pozo R, Romine C and der Vorst HV (1994)

Templates for the solution of linear systems: Building blocks

for iterative methods, 2nd edition. Philadelphia, PA: SIAM.
Bell N and Garland M (2008) Efficient sparse matrix-vector

multiplication on CUDA. NVIDIA Technical Report

NVR-2008-004’’, NVIDIA Corporation, Santa Clara, CA,

December.
Braess D (2007) Finite elements: Theory, fast solvers, and

applications in solid mechanics, volume 3. Cambridge:

Cambridge University Press.
Buluc, A, Williams S, Oliker L and Demmel J (2011)

Reduced-bandwidth multithreaded algorithms for sparse

matrix-vector multiplication. In: Proceedings of the 2011

IEEE International Parallel & Distributed Processing Sym-

posium (IPDPS ’11), pp. 721–733. Washington, DC:

IEEE Computer Society. DOI: 10.1109/IPDPS.2011.73.
Buttari A, Dongarra JJ, Langou J, Langou J, Luszczek P and

Kurzak J (2007) Mixed precision iterative refinement tech-

niques for the solution of dense linear systems. Int. J. of

High Perf. Comp. & Appl. 21(4): 457–486.
Choi JW, Singh A and Vuduc RW (2010) Model-driven auto-

tuning of sparse matrix-vector multiply on GPUs. In: Pro-

ceedings of the 15th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming (PPoPP

’10), pp. 115–126. New York, NY: ACM. DOI 10.1145/

1693453.1693471.
Corporation N (2012) NVIDIA’s next generation CUDA

compute architecture: Kepler GK110. Whitepaper.
Dorostkar A, Lukarski D, Lund B, Neytcheva M, Notay Y

and Schmidt P (2014) CPU and GPU performance of

large scale numerical simulations in geophysics. In: Lopes

L, Źilinskas J, Costan A, Cascella R, Kecskemeti G, Jean-

not E, Cannataro M, Ricci L, Benkner S, Petit S, Scarano

V, Gracia J, Hunold S, Scott S, Lankes S, Lengauer C,

Carretero J, Breitbart J and Alexander M (eds) Euro-Par

2014: Parallel Processing Workshops, Lecture Notes in

Computer Science, volume 8805. Porto, Portugal: Springer

International Publishing.
Filipovic J, Madzin M, Fousek J and Matyska L (2013) Opti-

mizing CUDA code by kernel fusion—application on BLAS.

Available at: http://arxiv.org/abs/1305.1183 (accessed June

2014).
Hestenes MR and Stiefel E (1952) Methods of conjugate gra-

dients for solving linear systems. Journal of Research of the

National Bureau of Standards 49: 409–436.
Hoemmen MF (2010) Communication-avoiding Krylov sub-

space methods. PhD Thesis, EECS Department, University

of California, Berkeley.
Kogge P, Bergman K, Borkar S, et al. (2008) ExaScale com-

puting study: Technology challenges in achieving ExaScale

systems. Available at: http://www.cse.nd.edu/Reports/

2008/TR-2008-13.pdf
Kreutzer M, Hager G, Wellein G, Fehske H and Bishop AR

(2014) A unified sparse matrix data format for modern

processors with wide SIMD units. CoRR, vol. 3 abs/

1307.6209, Cornell University Library.
Li R and Saad Y (2013) GPU-accelerated preconditioned

iterative linear solvers. The Journal of Supercomputing

63(2): 443–466.

Lukash M, Rupp K and Selberherr S (2012) Sparse approxi-

mate inverse preconditioners for iterative solvers on

GPUs. In: HPC’ 12: Proceedings of the 2012 Symposium

on High Performance Computing, San Diego, April pp. 1–

8. San Diego, CA: Society for Computer Simulation

International.
MAGMA (2015b) PARALUTION. Available at: http://

www.paralution.com/ (accessed November 2014).
MAGMA (2014) ViennaCL. Available at: http://viennacl

.sourceforge.net/ (accessed November 2014).
MAGMA (2015a) MAGMA 1.6.1. Available at: http://icl

.cs.utk.edu/magma/ (accessed November 2014).
Malossi CI, Ineichen Y, Bekas C, Curioni A and Quintana-

Ortı́ ES (2014) Performance and energy-aware characteri-

zation of the sparse matrix-vector multiplication on

multithreaded architectures. In: 3rd Int. Workshop on

Power-aware Algorithms, Systems, and Architectures–

ICPP PASA 2014.

Monakov A, Lokhmotov A, and Avetisyan A (2010) Auto-

matically tuning sparse matrix-vector multiplication for

GPU architectures. In: Proceedings of the 5th international

conference on High Performance Embedded Architectures

and Compilers (HiPEAC’10) (eds YN Patt, P Foglia, E

Duesterwald, P Faraboschi and X Martorell), Pisa,

Italy, 25–27 January 2010, pp. 111–125. Berlin, Heidel-

berg: Springer-Verlag. DOI: 10.1007/978-3-642-11515-

8_10.
NVIDIA Corporation (2009) NVIDIA CUDA Compute uni-

fied device architecture programming guide. Santa Clara,

CA: NVIDIA Corporation.

NVIDIA version 7.0 (2015) Cuda c best practices guide.

Available at: http://docs.nvidia.com/cuda/cuda-c-best-

practices-guide/ (accessed March 2015).
NVIDIA version 7.0 (2013a) cuSPARSE library. https://

developer.nvidia.com/cuSPARSE (accessed March 2015).
NVIDIA (2013b) NVIDIA CUDA TOOLKIT V6.0.
Saad Y (2003) Iterative Methods for sparse linear systems.

Philadelphia: Society for Industrial and Applied

Mathematics.
Sawyer W (2011) CUSPARSE/CUBLAS example: BiCGStab

iterative solver for non-symmetric linear systems. Available

at: https://hpcforge.org/plugins/mediawiki/wiki/gpu-train-

ing/index.php/Main_Page (accessed November 2014).
van der Vorst H (1992) Bi-CGSTAB: A fast and smoothly

converging variant of Bi-CG for the solution of nonsym-

metric linear systems. SIAM Journal on Scientific and Sta-

tistical Computing 13(2): 631–644.
Williams S, Bell N, Choi J, Garland M, Oliker L and Vuduc

R (2010) Sparse matrix vector multiplication on multicore

and accelerator systems. In: Kurzak J, Bader DA and

Dongarra J (eds) Scientific Computing with Multicore Pro-

cessors and Accelerators. CRC Press.
Yamazaki I, Anzt H, Tomov S, Hoemmen M and Dongarra J

(2014) Improving the performance of CA-GMRES on

multicores with multiple GPUs. In: Proceedings of the 2014

IEEE 28th International Parallel and Distributed Processing

Symposium (IPDPS ’14), Phoenix, AZ, 19–23 May 2014,

pp. 382–391. Washington, DC: IEEE Computer Society.

DOI: 10.1109/IPDPS.2014.48.

Anzt et al. 17

 at University of Manchester Library on July 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

Author biography

Hartwig Anzt is a PostDoctoral researcher in Jack
Dongarra’s Innovative Computing Lab (ICL) at the
University of Tennessee. He received his Ph.D. in
mathematics from the Karlsruhe Institute of
Technology (KIT) in 2012. Dr. Anzt’s research inter-
ests include simulation algorithms, sparse linear alge-
bra, hardware-optimized numerics for GPU-
accelerated platforms, communication-avoiding and
asynchronous methods, and power-aware computing.

William Sawyer is a computational scientist at the
Swiss National Supercomputing Centre (CSCS), in
Lugano, Switzerland, a branch of the Swiss Federal
Institute of Technology, Zurich (ETH), and supports
CSCS’s customers from the Geosciences. He completed
his dissertation on’’Efficient Numerical Methods for
the Shallow Water Equations on the Sphere’’ in 2006
at the ETH Zurich. He has an extensive research
record in the field of parallel applications and algo-
rithms for HPC platforms, in particular for numerical
weather prediction, climate models and data assimila-
tion systems.

Stanimire Tomov is a Research Director in the
Innovative Computing Laboratory (ICL) at the
University of Tennessee. Tomov’s research interests are
in parallel algorithms, numerical analysis, and high-
performance scientific computing (HPC). He has been
involved in the development of numerical algorithms
and software tools in a variety of fields ranging from
scientific visualization and data mining to accurate and

efficient numerical solution of PDEs. Currently, his
work is concentrated on the development of numerical
linear algebra libraries for emerging architectures for
HPC, such as heterogeneous multicore processors, gra-
phics processing units (GPUs), and Many Integrated
Core (MIC) architectures.

Piotr Luszczek is a Research Director at the University
of Tennessee. His research interests include large scale
parallel algorithms, numerical analysis, and high-
performance computing (HPC). He has been involved
in the development and maintenance of widely used
software libraries for numerical linear algebra. In addi-
tion, he specializes in computer benchmarking of
supercomputers using codes based on linear algebra,
signal processing, and PDE solvers.

Jack Dongarra holds appointments at the University of
Tennessee, Oak Ridge National Laboratory, and the
University of Manchester. He specializes in numerical
algorithms in linear algebra, parallel computing, use of
advanced computer architectures, programming meth-
odology, and tools for parallel computers. His contri-
butions to the HPC field have received numerous
recognitions including the IEEE Sid Fernbach Award
(2004), the first IEEE Medal of Excellence in Scalable
Computing (2008), the first SIAM Special Interest
Group on Supercomputing’s award for Career
Achievement (2010), and the IEEE IPDPS 2011
Charles Babbage Award. He is a fellow of the AAAS,
ACM, IEEE, and SIAM and a member of the
National Academy of Engineering.

18 The International Journal of High Performance Computing Applications

 at University of Manchester Library on July 17, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

